Összetett Függvény Deriválása

Sunday, 02-Jun-24 00:00:13 UTC

Az összetett függvény deriváltja - YouTube

Főiskolai, Egyetemi Tankönyvek Könyv - 1. Oldal

Ez a videó előfizetőink számára tekinthető meg. Ha már előfizető vagy, lépj be! Ha még nem vagy előfizető, akkor belépés/regisztráció után számos ingyenes anyagot találsz. Szia! Tanulj a Matek Oázisban jó kedvvel, önállóan, kényszer nélkül, és az eredmény nem marad el. Lépj be a regisztrációddal: Elfelejtetted a jelszavad? Jelszó emlékeztető Ha még nem regisztráltál, kattints ide: Regisztrálok az ingyenes anyagokhoz Utoljára frissítve: 00:55:17 Az összetett függvényekkel foglalkozunk. Összetett függvények deriválását tanuljuk meg. Példákat, feladatokat oldunk meg az összetett függvény deriválásához. Többszörösen összetett függvények deriválására is sor kerül. Függvények deriválása Hibajelzésedet megkaptuk! Köszönjük, kollégáink hamarosan javítják a hibát....

:: Www.Maths.Hu :: - Matematika Feladatok - Differenciálszámítás, Összetett Függvények Deriválása, Deriválás, Derivál, Derivált, Függvény, Összetett Függvény, Láncszabály

Van itt egy függvény. Ha néhány pontjában érintőt húzunk a függvényhez, akkor az látszik, hogy ahol az érintő fölfelé megy, ott a függvény növekszik, ahol az érintő lefelé megy, ott a függvény csökken. Ott pedig, ahol az érintő vízszintesen megy, a függvénynek minimuma van, de tulajdonképpen lehet maximuma is. Mi az a deriválás, Deriváltak kiszámolása, Differencia hányados, Differenciál hányados, Alapderiváltak, Deriválási szabályok, Összeg deriváltja, Szorzat deriváltja, Hányados deriváltja, Összetett függvény deriváltja, A láncszabály, Deriválás feladatok megoldásokkal. Az érintő tehát valahogy együtt mozog a függvénnyel, így ha ki tudjuk számolni a függvény érintőinek a meredekségét, akkor meg tudjuk mondani, hogy mit csinál maga a függvény. Számoljuk ki mondjuk ennek az érintőnek a meredekségét. A meredekség azt jelenti, hogy ha egyet lépünk előre, akkor mennyit lépünk fölfelé. A meredekség kiszámolásához segítségül hívunk egy másik pontot. Először annak az egyenesnek számoljuk ki a meredekségét, ami ezen a két ponton megy át.

Láncszabály – Wikipédia

Ez a korrekt egység az f -részére. A láncszabály állítása [ szerkesztés] A láncszabály legegyszerűbb formája egy valós változót tartalmazó valós függvény esete. Ekkor, ha g egy függvény, mely differenciálható c pontnál (vagyis a g ′( c) létezik), és f egy függvény, mely differenciálható g ′( c)-nél, akkor az f ∘ g összetett függvény differenciálható c -nél, és a deriváltja: [2] a szabályt sokszor így rövidítik: Ha y = f ( u), és u = g ( x), akkor ez a szabály rövidített formája Leibniz-féle jelöléssel: Azok a pontok, ahol a derivált képződik, explicit módon: Több mint két függvény esete [ szerkesztés] A láncszabály alkalmazható kettőnél több függvény esetében is. Több függvény deriválása esetén, az f, g, és h összetett függvények esetén, ez megfelel a f g ∘ h -vel. A láncszabály azt mondja, hogy a f ∘ g ∘ h deriváltjának kiszámításához elegendő az f, és a g ∘ h deriváltjainak kiszámítása. Az f deriválása közvetlenül történhet, és a g ∘ h deriválása a láncszabály szerint végezhető el. Egy gyakorlati esetben: Ez lebontható három részre: Ezek deriváltjai: A láncszabály azt mondja, hogy x = a ponton az összetett függvény deriváltja: Leibniz-féle jelöléssel: vagy m röviden: A derivált függvény ezért: Egy másik útja a számításnak, tekintsük a f ∘ g ∘ h összetett függvényt, mint a f ∘ g és h összetevőit.

1. Függvény konstans-szorosának deriváltja Tétel: Ha f (x) függvény differenciálható egy x 0 pontban akkor a c f(x) függvény is differenciálható ebben az x 0 pontban és (cf(x 0))' =c f'(x 0). Röviden: (cf(x))' =c f'(x). Másképp: Egy függvény konstans-szorosának deriváltja a függvény deriváltjának konstans-szorosa. 2. Két függvény összegének és különbségének deriváltja Feladat: Határozzuk meg a következő függvények differenciálhányadosát az x 0 = 3 pontban és írjuk fel a derivált függvényeiket! f(x)=x 2 és g(x) = -4x+3 Megoldás: \[ f'(x_{0}=3)=lim_{ x \to 3}\frac{x^2-3^2}{x-3}=\lim_{ x \to 3}\frac{(x-3)(x+3)}{x-3}=\lim_{ x \to 3}(x+3)=6. \] Így f'(x=3)=6. \[ g'(x_{0}=3)=lim_{ x \to3}\frac{(-4x+3)-(-4·3+3)}{x-3}=\lim_{ x \to 3}\frac{-4x+12}{x-3}=\lim_{ x \to 3}\frac{-4(x-3)}{x-3}=-4. \] Így g'(x=3)=-4. Képezzük most a fenti két függvény összegét: c(x)=f(x)+g(x), azaz c(x)=x 2 + 4x+3. \[ c'(x_{0}=3)=\lim_{ x \to 3}\frac{(x^2-4x+3)-(3^2-4·3+3)}{x-3}=\lim_{ x \to 3}\frac{x^2-4x+3}{x-3}=lim_{ x \to 3}\frac{(x-3)(x-1)}{x-3}=\lim_{ x \to 3}(x-1)=2.